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ABSTRACT 

The Systems Simulation Centre of the DSTO is currently considering the implementation 
of a commercial-off-the-shelf software package called SensorVision to fulfil the scene 
generation function of an infrared hardware-in-the-loop (HIL) system. Before the 
software can be used for the intended application, there is a need to verify and validate 
the SensorVision models to ensure that the generated scenes are sufficiently realistic for 
HIL simulation purposes. This report discloses the results and conclusions of a 
validation effort focused on the SensorVision thermal emission model, which includes 
both the surface temperature prediction of objects and the thermal radiance calculations. 
It is shown that the thermal emission model employed by SensorVision has errors that 
can affect the level of realism associated with the generated infrared images. Unrealistic 
scenes can cause spurious HIL simulation results, since these infrared images are used 
as the primary stimuli for the system being tested. 

A procedure for providing confidence in HIL simulation results is recommended, 
involving general guidelines for simulation construction and post-processing operations 
to provide users with image error indications. 
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Validation of the SensorVision 
Thermal Emission Model 

Executive Summary 

The validity of models used in the SSCs (Systems Simulation Centre) HIL 
(hardware-in-the-loop) f acuity at the DSTO has become an issue of recent concern. The 
results of a HIL simulation has only limited usefulness if there is low confidence in the 
ability of the HIL scene generators to produce realistic virtual environments. Both the 
target signature and background clutter, as well as any other significant signature effects, 
need to be faithfully reproduced by computational models. Confidence in HIL 
simulation results therefore, in part, requires confidence in the scene generator models. 

In this report, the validation effort conducted on a COTS (commercial-off-the-shelf) 
software package called SensorVision is described. The SSC intends to employ 
SensorVision for the purpose of real-time image generation for HIL simulations 
involving imaging IR seekers. The physics-based model used by SensorVision to 
calculate the emitted radiance from solid objects due to thermal emission processes is 
scrutinised, and the temperature prediction model is validated against experimental 
data. The two main outcomes of this work are: a figure-of-merit parameter was 
developed to indicate the accuracy of the thermal emission model for any given 
simulation; and it was shown that the current version of the temperature prediction 
model is not appropriate for Australian climates and conditions. 
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1.  Introduction 

1.1 Infrared Scene Generation and SensorVision 

The SSC (Systems Simulation Centre) is currently in the process of upgrading the HIL 
(hardware-in-the-loop) facility at the DSTO (Defence Science and Technology 
Organisation) to enable the test and evaluation of imaging IR (infrared) seekers. The 
upgrade consists of two main components: 

• the acquisition and integration of an IRSP (infrared scene projector) into the 
existing system; and 

• the development of an IRSG (infrared scene generator) capable of real-time IR 
image generation. 

The proposed HIL system is shown schematically in Figure 1-1. The subsystem of main 
interest in this report is the IRSG. The functions of the IRSG are two-fold: first, it is 
responsible   for   creating   and   mamtaining   the   3-D   (three-dimensional)   virtual 

Man-Machine Interface 

Simulation Computer 

i:   1« 

IR Scene Projector 

IR Scene Generator 

Motion Table 
Controller 

Motion Table 

Figure 1-1: IR HIL system. 
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environment within which the seeker is to be immersed; and second, it renders that 
environment into the 2-D (two-dimensional) images used to stimulate the seeker via the 
IRSP. 

The requirements of the combined IRSG and IRSP modules are demanding in that the IR 
scenes used to stimulate the seeker must be realistic, and the image framerates can be 
extremely high (in excess of 100 Hz for some air-to-air seekers). The former criterion is 
somewhat ambiguous because it is dependent on the SUT (system under test). The 
scenes only need to be realistic enough such that the SUT performs in a manner 
consistent with a real-life engagement. Given the diversity of current and future IR 
seekers that may be tested within the HIL facility, the policy adopted by the DSTO is to 
ensure that the scenes used to stimulate the seeker are as realistic as possible given other 
critical constraints (such as cost, effort, and the requirement for real-time performance). 

The quality of scenes and the rate of image generation is initially controlled by the IRSG. 
The IRSP may then degrade the scenes and affect the framerate, depending on the 
capabilities of the unit. In addition, various IRSP induced artifacts may occur. This report 
will only consider the IRSG. 

The IRSG system that is currently being evaluated in the SSC is a COTS 
(commercial-off-the-shelf) based system. The decision to pursue a COTS solution was 
primarily motivated by cost considerations. The purchase and maintenance of 
commercial products is generally more cost effective than the in-house development of 
custom products. The IRSG system, which is shown in Figure 1-2, uses an SGI™ Onyx2™ 
computer platform with an InfiniteReality2TM graphics engine. A real-time visual 
simulation tool called Vega™ is used to control the simulations and perform the 
rendering operations. Vega is built upon the graphics languages OpenGL™ and 
Performer™. SensorVision™ is a Vega add-on module, which enables Vega to perform 
IR simulations. SensorVision contains the physics-based models required to compute the 
radiometric ER images associated with the virtual environment. Both Vega and 
SensorVision are distributed by MultiGen-Paradigm™ Incorporated. 

SensorVision is a real-time ER signature prediction package, which uses various 
approximations to enable real-time computations. The nature of these approximations 
are described in detail in reference [1]. This report focuses on the validation of the 
SensorVision thermal emission model, which includes both the surface temperature 
prediction of objects in the scene and the thermal emission radiance computation. 
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SensorVision Simulation 

Onyx2 Computer with 
InfiniteReality2 Graphics Engine 

1    . 

'\*t 

j 

Figure 1-2: COTS based IRSG system. 

1.2 Verification and Validation 

The concept of verification and validation (V&V) is frequently encountered in a range of 
different engineering disciplines, but the distinct differences between the two terms are 
often not clearly understood. 

• Verification determines the accuracy and consistency of software algorithms 
compared to the underlying mathematical models [2]. A verified software 
program should be algorithmically correct and any numerical methods used 
should lead to solutions having the accuracy required by the application. 
Verification is often associated with software debugging procedures. 

• Validation is a more fundamental concept in that it considers the relationship 
between the underlying mathematical model and the real world system upon 
which it is based [2]. In other words, validation is concerned with how well models 
represent real physical processes. 

Ideally, it should not be necessary to verify commercial software since it is normal to 
assume that quality assurance practices and software testing procedures in a commercial 
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establishment are sufficiently comprehensive to ensure reasonably bug-free programs. 
Consequently, the verification of Sensor Vision is not considered to any depth within this 
report and the validation of SensorVision is the main focus. 

With validation, there are two main model attributes that are of concern: accuracy, and 
realism. Accuracy refers to the ability of a model to correctly characterise some physical 
process, while realism additionally requires all significant and relevant physics to be 
modelled. For example, a model may characterise thermal emission processes accurately, 
but if reflection phenomena are ignored, the model may be not be realistic. 

In general, there are two strategies1 that can be adopted in a validation effort: 

• Mathematical validation involves the comparison of data obtained from the model 
with data obtained from other (non-real-time) models that are considered accurate. 
Mathematical validation is primarily concerned with the accuracy of the models. 

• Experimental validation involves the comparison of model generated results 
against experimentally measured data. Experimental validation may also consider 
the realism of the model as well as the accuracy aspects. 

The SensorVision validation will be conducted from both mathematical and 
experimental perspectives. However, because mathematical validation is the more 
economical and less labour intensive option, this strategy will mainly be applied. 

1.3 Proposed Validation Procedures for HIL Simulations 

The purpose and aim of a validation program are often difficult to articulate. In most 
cases, models are not perfect and there are difficult questions to answer in relation to 
how results from a validation program should be interpreted. In particular, with respect 
to HIL simulations and the IRSG function, some pertinent questions include: 

• How realistic does the SensorVision models and resultant generated images have 
tobe? 

• What are the effects of artifacts in the virtual environment on the response of the 
seeker? 

These questions can only be answered by experts with intimate knowledge of the 
subsystems of the seeker being tested, given sufficient information. With this truth in 
mind, a two tier approach to the validation program is proposed. 

First, the validation effort should be conducted with a view to develop general 
guidelines that could be employed during the simulation construction phase of a HIL 
procedure. For example, simple guidelines could be used to identify conditions that are 

• Obviously, both validation strategies assume verified models. An unverified model may generate incorrect 
results due to errors in the algorithm code thus it cannot be properly validated. 
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likely to cause erroneous or unrealistic scenes. These conditions could then be avoided 
in the simulation. 

Second, some post-simulation validation procedure should be developed to enable users 
of HIL simulations to form opinions as to the validity of a set of HIL results. Ideally, some 
measure of quality should be provided to indicate the sorts of errors associated with the 
simulation. Furthermore, it would be advantageous if the origins of the errors are also 
provided. The most promising idea is to formulate a procedure whereby frame grabs are 
obtained at various instances during a simulation. In post-simulation operations, those 
same frames are processed again using accurate non-real-time models. A certain amount 
of confidence needs to be placed in the ability of the non-real-time models to produce 
accurate and realistic images. An error frame showing radiometric error figures 
(between the SensorVision generated results and the non-real-time accurate model) 
could then be generated and presented to experts for evaluation. 

The proposed two tier approach should be sufficient for realistic HIL simulations to be 
created and subsequently evaluated. 

1.4 Report Outline 

This report consists of two distinct sections. Chapter 2 discusses the validation effort 
associated with the SensorVision model used to compute the emitted radiance from an 
object due to thermal emission. The model is mathematically validated against an 
accurate non-real-time model, and a measure of quality figure is developed. This 
measure of quality can be used during the simulation construction phase to rapidly 
assess the likely level of errors associated with that particular simulation. In addition, 
general guidelines are developed to indicate simulation scenarios that should be avoided 
to minimise SensorVision generated errors. 

The second main component of the report, which discusses the validation of the 
temperature prediction model used by SensorVision, is presented in Chapter 3. The 
temperature prediction model is validated against experimental data obtained from 
trials conducted in Northern Australia. Measured temperature diurnal profiles are 
compared against SensorVision generated results and conclusions are formulated based 
on these results. 

The validation described in Chapter 2 and Chapter 3 provides an excellent indication of 
SensorVision's ability to model signature components due to thermal emission 
processes. The realism aspects of SensorVision are not really considered in this report 
since reflection and path scattering processes are not validated. Chapter 4 provides a 
summary of conclusions and recommendations for further work. 
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2.  Validation of the Thermal Emission Model 

2.1 The SensorVision Thermal Emission Model 

Reference [1] describes in detail the thermal emission model employed by SensorVision. 
The model is an equation that computes the radiance received by a sensor due to thermal 
emission processes from a material with a surface temperature, T. The models used to 
predict the surface temperature T is discussed in Chapter 3. 

The SensorVision thermal emission model is based on the following physics. 
Fundamentally, the emitted radiance1 from any solid surface is described in terms of the 
thermal emission from a blackbody. The blackbody is an idealised material, with 
properties that make it a perfect absorber and a perfect radiator. All energy incident on 
a blackbody is completely absorbed and consequently radiated in order to maintain 
thermal equilibrium. The spectral radiance (L^ ) emitted from a blackbody of 
temperature (T) is modelled by the well known Planck's blackbody equation, and is 
given by 

Tbb   .           c\ ,TAT   -2   -l      -K /r, ,. L^   =  -_  (Wm   sr   urn   ). (2-1) 

KX 
f Si     \ 

5|    XT     - » 
e    -1 

V J 

The parameters Cj and c2 are radiation constants, and are given by 

cx = 3.7418 x 108 (Wm"2um4),and (2-2) 

c2 = 1.438769 x 104 (fimK), respectively. (2-3) 

The subscript "X" is used to indicate the wavelength dependence of the blackbody 
spectral radiance. The integration of (2-1) over waveband of interest yields the radiance 
emitted from a blackbody within that waveband. For a real material, a property referred 
to as the spectral emissivity (e^) represents the material's efficiency of emission relative 
to a blackbody radiator. Assuming the material is Lambertian2, the spectral radiance 
emitted by the material is given by 

Radiance is the fundamental unit of infrared physics. Radiance (or sterance) is defined as the power per 
unit projected area per unit solid angle. 

2' A Lambertian material is one in which the radiance emitted by the material is independent of the 
observation angle. In other words, a Lambertian material is an isotropic radiator with respect to 
radiance (not intensity). Lambertian materials are also often described as diffuse. 
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Temitted Tbb ._   .. 
h = *xh • (2-4) 

If the material is opaque so that transmission processes are neglected then the 
relationship between spectral emissivity and spectral reflectivity3 (p^) is given by 

ex = l-Px- (2-5) 

Equation (2-5) is simply a statement of the conservation of energy. Taking into account 
the spectral response of the sensor4 (cp^) and the atmospheric transmission coefficient 
(T^ ) along the LOS (line of sight) path between the material and the sensor, the spectral 
radiance detected by the sensor is given by 

T sensor rbb ,_ ,. 
h      = W&h ■ (2-6) 

The radiance detected over the waveband Xj to X2 is given by 

Lexact = fc<pxTxexLh
x
bdk (WnfV1). (2-7) 

Equation (2-7) is the generally accepted physically accurate equation for calculating the 
radiance incident on a sensor due to thermal emission processes, and will be referred to 
as the "exact" model. The radiating material is assumed to be Lambertian, opaque, and 
solid. Note that thermal emissions due to the atmosphere along the LOS path from the 
material to the sensor are not modelled by (2-7). SensorVision separates the thermal 
emissions due to the atmospheric path from the emissions due to solid opaque 
materials [1]. 

The problem with employing (2-7) in a real-time signature prediction code is that the 
equation involves a spectral integration, which is computationally time consuming to 
evaluate. Consequently, SensorVision uses various approximations to increase the speed 
with which the thermal emission quantities can be calculated. The SensorVision thermal 
emission model is based on the equation 

Spectral reflectivity is the property of a surface that specifies the amount of spectral irradiance (total 
spectral radiance incident on the surface area) reflected by the surface. It is defined as the ratio of the 
spectral exitance (total spectral radiance reflected by total surface area) to the spectral irradiance. 

' The parameter (cp^) is used by SensorVision to crudely model any attributes of the sensor that causes 
frequency selectivity in its response. The parameter may include the lumped effect of transmission 
through the sensor optics, detector responsivity, or any other frequency selective sensor property. 
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LSV = fef\xZ,f <&. (2-8) 
* A.. 

In comparison to (2-7), the spectral terms T^ and E^ have been moved outside of the 
spectral integration and replaced by their in-band averaged values x and £. The bar 
notation is used to denote the averaging (mean) function. The integration term in (2-8) is 
essentially precomputed as a function of temperature, and stored in a multivariate 
database (or lookup table). Consequently, the SensorVision thermal emission model 
involves only fast multiplication calculations so that it can be executed in real-time. The 
direct comparison of (2-7) to (2-8) constitutes a mathematical validation. The 
determination of whether the use of lookup tables is accurate is a verification activity. 
Only the mathematical validation of the SensorVision thermal emission model will be 
considered in this report. 

The manipulation from (2-7) to (2-8) is valid only if the spectral atmospheric transmission 
coefficient and the material's spectral emissivity are constant within the waveband of 
interest. Interestingly, the approximation is also valid if the argument of the spectral 
integration (cp^L^ ) is constant within the waveband of interest. The proof for this 
statement is as follows: 

Consider the following substitution 

Lx = cp,Lf. (2-9) 

With this substitution, (2-8) can be expressed in the form 

LSV = xiyL^dk, (2-10) 

where the superscript "SV" indicates that the equation refers to the SensorVision 
implemented form of the thermal emission equation. If L^ has a constant value L 
within the waveband of interest, then 

LSV = zlL^dk (2-10a) 

=>     LSV = xlL(k2-\x). (2-10b) 

Now consider (2-7) expressed in the form 
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,exact        fa          r    ~ ,_ ,HV L         =r,TXEXLX^- (2-11) 

If L^ is again constant within the waveband of interest, then 

Lexaa = L?2Tkekdk (2-lla) 

iexact        T fa          j~.     (^2-^l) ,„.,,,x ->     L        = if^A   JJ-^ (2-llb) 

=>     L        = L 
(x2-^l) 

(^-A,) (2-llc) 

=>      Lexact = Liz (k2-\,) (2-lld) 

=>     Le^c' = Lfe (X2-X,) (2-lle) 

=>     Lexact = LSV. (2-llf) 

Consequently, it can be concluded that the SensorVision thermal emission 
equation (2-8) is exactly equivalent to the accurate equation (2-7) if the term (Px^x 
is constant within the waveband of interest. Note that the step from (2-lld) to 
(2-lle) requires the variables x^ and e^ to be independent. Given that the 
emissivity is a material property and the transmission coefficient is an atmospheric 
property, the variables T^ and £^ are clearly independent. 

To reiterate, the SensorVision equation is equivalent to the accurate thermal emission 
equation: 

• if the spectral atmospheric transmission coefficient and the material's spectral 
emissivity are constant within the waveband of interest; or 

• if the argument of the spectral integration cp^L^   is constant within the waveband 
of interest. 

In this validation effort, it is assumed that the spectral response of the sensor is unity so 
that the argument of the spectral integration is simply the spectral blackbody radiance. 
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2.2 Figure of Merit using the Second Moment 

Mathematical validation of the SensorVision thermal emission equation essentially 
involves the determination of the level of errors associated with the approximation 
described in Section 2.1. In this approximation, spectral terms are moved outside of the 
spectral integration and replaced by their in-band averaged values. From the discussion 
in Section 2.1, the level of errors associated with the SensorVision thermal emission 
model is clearly dependent on: 

• the variability of the material's spectral emissivity in the waveband of interest; 

• the variability of the spectral atmospheric transmission coefficient in the waveband 
of interest; and 

• the variability of the spectral blackbody radiance in the waveband of interest 
(assuming the spectral response of the sensor is unity). 

In Section 1.3, a two tier validation strategy for ML simulations was proposed. In the first 
tier involving the use of guidelines for simulation construction, some figure of merit 
should ideally be defined to enable the rapid assessment of likely error levels given 
details of the simulation. Since the error levels are primarily dependent on the variability 
of several spectral parameters, the figure of merit should logically be based on the second 
moment or RMS (root mean square) error. The second moment is a value often used in 
mathematics to express the variability of a function or parameter. The second moment is 
defined by the equation 

e = V(AJC)
2
, (2-12) 

where AJC is the difference between the value x^ and the mean value x. For a continuous 
variable, the second moment can be calculated using 

K^-v -
2dk 

° - J^KT' (2"13) 

while the equation relevant for a discrete variable x^(n) with N samples is 

N 

e=   IjW»)-:]2. (2-14) 
IN 

71=1 

During the SensorVision validation effort, the second moment will be used to develop 
general guidelines for simulation construction. 
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2.3 Effect of Variability of Material Emissivity 

The first step in the validation effort was to determine the effect of variability in the 
material's spectral emissivity on the SensorVision thermal emission model. This task was 
accomplished by comparing radiance values computed using (2-7) and (2-8) for a range 
of materials. Two wavebands are of primary concern: the MWIR (mid-wave infrared) 
band; and the LWIR (long-wave infrared) band. The MWIR band nominally spans the 
waveband from 3 urn to 5 urn, and is the band usually exploited in air-to-air missiles. Hot 
exhaust plumes and hot engine parts tend to be very visible in the MWIR band. The 
LWIR band extends from about 8 urn to 12 urn, and is the band often used in the imaging 
of ground based scenes. Thermal emission processes dominate in the LWIR band, and it 
is the waveband in which thermal differences between objects with temperatures near 
ambient (= 300 K) can be most efficiently detected. In the following validation, the 
atmospheric transmission coefficient is assumed to be equal to one and a material 
temperature of 300 K is used. Consequently, the modified exact and SensorVision 
equations are 

T exact        r-i      Tbb n . .. „_. 
L        =      exLx dk, and (2-15) 

L     = ef Lx dk, respectively. (2-16) 

The error between the SensorVision and exact models for a range of materials were 
computed, and are plotted in the bar graphs of Figure 2-1. The errors are represented 
relative to the exact radiance values according to 

jSV     j exact 
error = -——- . (2-17) 

j. exact 

A total of 110 materials were tested including various composites, soils, vegetation, 
construction materials, and paints. These 110 materials represent the entire materials 
database packaged with SensorVision version 2.2. The emissivity (or reflectivity) data 
used in the computations were the default data for the materials included with the 
SensorVision package. These data are claimed to be representative of typical materials. 
The materials are labelled along the x-axis of the bar graphs in Figure 2-1 and are 
identified by their material codes. Table 2-1 contains the material descriptions with their 
codes. 
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Figure 2-1 (a) shows the SensorVision errors associated with the MWIR band. As can be 
seen, the errors fluctuate significantly depending on the material. A relative error of 
22.7 % is associated with the material oxidised aluminium. In comparison, the errors 
shown in Figure 2-l(b) for the LWIR band are negligible. These errors are only a fraction 
of a percent for all materials tested. Despite these results, it is not prudent to immediately 
conclude that SensorVision is ill-suited to the MWIR band and well-suited to the LWIR 
band. In fact, these results have a temperature dependence and the low errors associated 
with the LWIR band is mainly due to the chosen temperature of 300 K. The temperature 
dependence will be explained in greater detail in Section 2.5. For now, it suffices to state 
that no definite conclusions can be drawn from the results plotted in Figure 2-1, besides 
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Figure 2-1: Bar graphs showing the relative error caused by the SensorVision thermal emission 
model as a function of material for (a) the MWIR band and (b) the LWIR band. The temperature 
is assumed to be 300 K and the atmospheric transmission coefficient is assigned a value of unity. 
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Code Material Code Material Code Material 

COMPOSITES SOILS VEGETATION 
1 beige_fabric 46 beach_sand 83 broadleaf 
2 black_rubber 47 black_sand 84 broadleaf (shaded) 
3 brown_plastic 48 clay_soil 85 broadleaf-pine 
4 cream_fiberglass 49 compact_soil 86 broadleaf-pine (shaded) 
5 gold_nylon 50 desert_sand 87 broadleaf-scrub 
6 green_canvas 51 dry_lakebed 88 broadleaf-scrub (shaded) 
7 grey_fabric 52 dry_seabed 89 dry_grass 
8 olive_plastic 53 fresh_snow 90 dry_grass (shaded) 
9 orange_epoxy 54 ice 91 grass-scrub 

10 red_nylon 55 lake_sand 92 grass-scrub (shaded). 
11 tan_felt 56 limestone-silt 93 grass-soil 
12 white_fabric 57 limestone-silt-sand 94 grass-soil (shaded) 
13 yellow_silicon 58 limestone-silt-soil 95 lawn_grass 
14 asphalt_shingles 59 limestone_rock 96 lawn_grass (shaded) 

60 loam_soil 97 pine 
CONSTRUCTION 61 loamy_sand 98 pine (shaded) 

15 black_asphalt 62 lump_coal 99 pine-broadleaf 
16 block_concrete 63 old_snow 100 pine-broadleaf (shaded) 
17 clear_glass 64 road_gravel 101 pine-scrub 
18 dark_titanium 65 salt-silt 102 pine-scrub (shaded) 
19 metal_roof 66 sand-soil 103 scrub 
20 oxydized_aluminum 67 sandstone-soil 104 scrub (shaded) 
21 paved_concrete 68 sandstonejrock 105 scrub-grass-soil 
22 pebbled_asphalt 69 sandy_loam 106 scrub-grass-soil (shaded) 
23 pine_wood 70 scrub-soil 107 tree_bark 
24 red_brick 71 scrub-soil (shaded) 108 tree_bark (shaded) 
25 roof_tar 72 silt-sand 109 tundra 
26 rusting_steel 73 silty_clay 110 tundra (shaded) 
27 urban_commercial 74 siltyjoam 
28 urban_residential 75 tilled_soil 
29 wood_siding 76 

77 
varnished_sand 
vamished_sandstone 

PAINTS 78 water 
30 ash_grey 79 wetjakebed 
31 battleship_grey 80 wet_seabed 
32 blackish_brown 81 wet_soil 
33 bleached_yellow 82 white_sand 
34 canary _yellow 
35 dark_tan 
36 jet_black 
37 kelly_green 
38 light_red 
39 light_tan 
40 mint_green 
41 mustard_yellow 
42 off_white 
43 olive_green 
44 sky_blue 
45 snow_white 

Table 2-1: List of materials tested in validation and associated material codes. 
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the fact that the level of errors associated with the SensorVision thermal emission model 
is highly dependent on the material emissivity. 

Figure 2-2 shows the same results as those displayed in Figure 2-1 except that they have 
been transformed into the temperature domain. The exact and SensorVision computed 
radiance values are converted into effective temperatures, which are more intuitive to 
interpret. The effective temperature {Teft) is defined as the temperature of a blackbody 
that would generate the same radiance (L) as that observed, as given by 
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Figure 2-2: Bar graphs showing the error in effective temperature caused by the 
SensorVision thermal emission model as a function of material for (a) the MWIR band 
and (b) the LWIR band. The temperature is assumed to be 300 K and the atmospheric 

transmission coefficient is assigned a value of unity. 
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£ 2L[b{Teff)dk = L. (2-18) 

■ bb, 
Function L^ (T) is the blackbody equation (2-1). The errors in Figure 2-2 are expressed 
in terms of the difference in effective temperatures between the SensorVision generated 
results and the exact results. 

It is important to understand that the SensorVision errors (expressed as percentage 
radiance error or effective temperature difference) due to the variability in the spectral 
emissivity data cannot be separated from the effect of variations in Planck's blackbody 
curve. Consequently, for greater insight, the second moment of the spectral emissivity 
data needs to be computed. Figure 2-3 shows the second moment values for the spectral 
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Figure 2-3: Bar graphs of second moments of material emissivitiesfor (a) the MWIR band, and 
(b) the LWIR band. 
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emissivity data for the 110 materials considered. A second moment of zero corresponds 

to the best case where the emissivity is constant over the waveband, while a second 

moment of 0.5 corresponds to the worst case. In the worst case, the material's spectral 

emissivity has a value of one for exactly half of the waveband and zero for the other half. 

Overlaid on Figure 2-3(a) and Figure 2-3(b) are the relative error results from Figure 

2-l(a) and Figure 2-l(b), respectively. These errors are normalised to enable a visual 

comparison with the second moment values, hence they are not associated with any 

y-axis scale. As can be observed in the bar graphs of Figure 2-3, the second moment does 

indeed provide a reasonable method of estimating the level of errors associated with the 

use of certain materials in SensorVision simulations. Furthermore, comparisons of 

Figure 2-3(a) and Figure 2-3(b) indicate that the material emissivity data tend to fluctuate 

less in the LWIR band compared to the MWIR band. This inference is further supported 

by an average second moment value of 0.0159 in the LWIR band compared to an average 

value of 0.0349 in the MWIR band. Note that the magnitude of improvement in the 

second moment value for the LWTR band compared to the MWER band does not directly 

reflect the level of improvement in the relative errors (of Figure 2-1) or the effective 

temperature difference values (of Figure 2-2). The second moments computed in 

Figure 2-3 is dependent only on the spectral emissivity data, while the relative error (or 

the effective temperature difference) depends on both the spectral emissivity and the 

temperature. The relative error calculations, are biassed by variations in the Planck's 

blackbody curve (see Section 2.5), and are therefore not good independent indicators of 

which materials cause SensorVision errors. 

From the results of this validation, it is concluded that the SensorVision thermal emission 

model is more suited to LWIR simulations since materials tend to have spectral 
emissivity curves that fluctuate less in the 8 to 12 jxm band compared to the 3 to 5 urn 

band. Given that the second moment has a maximum value of 0.5 and a minimum value 
of zero for emissivity data, a reasonable figure of merit or error indicator (El) with a more 

intuitive range of zero to 100 can be defined as 

N 

EIe = 100 x 2ez = 100 x | ]T [ex(n) - if. (2-19) 

n = l 

Table 2-2 lists the EI£ values for the 110 materials currently in the SensorVision materials 

database. This table can be consulted when constructing SensorVision simulations in 

order to make competent decisions on whether certain materials should be included in 

the simulation. 
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Error Indicator Error Indicator Error Indicator 

Code (EIE) Code 
(EIt) 

Code (EIE) 

MWIR LWIR MWIR LWIR MWIR LWIR 

1 5.9 5.0 38 4.5 1.7 75 4.5 0.9 
2 0.3 0.7 39 2.0 2.7 76 21.1 6.3 
3 8.4 2.0 40 2.3 1.3 77 24.9 3.9 
4 0.2 1.2 41 17.4 3.3 78 1.0 0.4 
5 17.2 6.5 42 9.7 1.8 79 3.3 6.7 
6 5.1 2.7 43 4.4 2.4 80 3.3 6.7 
7 5.5 9.4 44 4.2 1.8 81 3.6 0.6 
8 9.0 0.3 45 19.8 3.7 82 5.6 14.5 
9 0.2 0.5 46 29.1 6.7 83 0.6 0.6 

10 1.1 0.8 47 3.5 8.9 84 0 0.6 
11 18.9 4.8 48 16.1 8.0 85 2.3 0.2 
12 8.9 0.7 49 6.4 1.4 86 1.7 0.2 
13 15.2 6.7 50 13.8 4.3 87 3.9 1.2 
14 3.9 4.2 51 18.5 6.7 88 3.6 1.2 
15 1.9 2.7 52 21.1 6.3 89 14.5 8.2 
16 6.1 3.4 53 1.0 0.8 90 12.9 7.9 
17 1.6 24.6 54 2.4 1.8 91 10.7 4.8 
18 3.9 1.9 55 12.9 9.4 92 9.5 4.6 
19 5.9 1.4 56 7.7 2.9 93 9.4 3.0 
20 13.4 3.9 57 4.9 5.0 94 8.3 2.9 
21 3.6 2.1 58 2.5 1.7 95 0.5 0.5 
22 3.9 4.2 59 5.8 7.3 96 0.3 0.5 
23 10.2 3.6 60 8.5 1.0 97 3.0 0 
24 17.4 4.5 61 17.3 16.9 98 1.5 0 
25 0.3 0.3 62 0.6 0.5 99 1.2 0.4 
26 6.6 2.4 63 1.0 0.7 100 0.7 0.4 
27 3.4 0.8 64 10.2 3.1 101 2.2 0.8 
28 11.6 0.8 65 7.0 0.4 102 2.0 0.8 
29 6.9 1.7 66 7.6 2.7 103 6.9 1.7 
30 1.3 1.9 67 4.5 3.0 104 6.0 1.6 
31 0.2 1.6 68 5.8 7.3 105 8.7 2.6 
32 8.1 3.6 69 12.7 6.0 106 7.7 2.5 
33 4.0 1.0 70 6.3 0.3 107 6.9 1.7 
34 4.3 2.0 71 5.5 0.3 108 6.0 1.6 
35 6.6 3.2 72 7.7 2.9 109 3.9 0.8 
36 0.3 1.3 73 11.2 0.5 110 4.5 0.8 
37 0.4 1.4 74 17.2 3.2 

Table 2-2: Emissivity error indicator values for materials. 

18 



DSTO-RR-0212 

2.4 Effect of Variability of Atmospheric Transmission Coefficient 

In the validation described in Section 2.3, the atmospheric transmission coefficient was 
assumed to have a constant value of one and it was subsequently ignored. In this section, 
the effect of the spectral atmospheric transmission coefficient on the accuracy of the 
Sensor Vision thermal emission model will be assessed. The validation procedure used in 
this section is essentially the same as that employed in the previous section. The 
variability of the spectral transmission coefficient can be quantified by using the second 
moment, and an error indicator (El) can be defined according to 

N 

EIX= 100x|j[T^(n)-f]2. (2-20) 

Again, an El value of zero represents the best case while a value of 100 indicates the worst 
case. 

The atmospheric transmission coefficient is a complex parameter that is dependent on 
several factors including the weather conditions, the atmospheric profile, the waveband, 
and the LOS path between the sensor and the radiating material. It is a difficult 
parameter to predict due to its dependence on many influences. In this validation effort, 
a program called the MOSART (Moderate Spectral Atmospheric Radiance and 
Transmittance) code is used to generate the spectral atmospheric transmission coefficient 
for a range of different LOS paths for both the MWIR and LWIR bands. The transmission 
coefficients were computed for a location in northern Australia for the date 31st January 
1998 at time 15:00 LST (local standard time) or 5:30 GMT (Greenwich Mean Time). The 
choice of these parameters was mainly arbitrary. The LOS paths for which the spectral 
transmission coefficients were computed are listed in Table 2-3, and included horizontal 
paths to 90° slant paths with ranges varying from 1 km to 50 km. In all cases, the altitude 
at the lower end of the path was 100 m. The computed El values associated with the 
transmission coefficients for these paths are listed in Table 2-4. From Table 2-4, it is clear 
that the El values are typically smaller in the LWIR band compared to the MWIR band. 
In fact, some of the El values for the MWIR band are very large (with values in excess of 
70 compared to a worst case value of 100) and indicate that the transmission coefficient 
varies significantly in the MWIR band. Scrutiny of Figure 2-4, which contains some 
atmospheric transmission coefficient plots, reveals the reasons for these observations. 
The variability of the transmission coefficient curve is clearly lower in the LWIR band 
compared to the MWIR band. In particular, there is a complete null at 4.3 Jim due to C02 

(carbon dioxide) absorption, which contributes to a large El value in the MWIR band. 
The general decrease in El values as the range increases is caused by the fact that the 
atmospheric attenuation increases with range. Consequently, the transmission 
coefficient is reduced and the variability in the spectral curve decreases. Figure 2-4(b) 
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shows a transmission coefficient plot for a high attenuation case resulting in lower 
variability in both the MWIR and LWIR cases, compared to Figure 2-4(a). As the 
elevation angle for the LOS path approaches 90 degrees, the effect of range becomes less 
pronounced due to the thinner atmosphere at higher altitudes. Furthermore, in the LWIR 
case, the introduction of some high altitude atmospheric molecular species has caused 
additional attenuation near 10 urn, which was not evident at lower altitudes (compare 
Figure 2-4(d) to Figure 2-4(c)). This extra attenuation at 10 urn increases the variability of 
the LWIR transmission coefficient and hence causes a slight increase in the El values as 
the LOS path extends to higher altitudes. 

The main conclusion drawn from the results contained in Table 2-4 is that the 
SensorVision thermal emission model is more suited to LWIR simulations than MWIR 
simulations. The large variations in the spectral atmospheric transmission coefficient in 
the MWIR band may introduce significant errors in the SensorVision simulation. 
However, the level of errors will reduce if narrower bands within the MWIR band are 
considered, especially if the null in the vicinity of 4.3 urn is omitted from the waveband. 

In a HIL simulation, it is difficult to determine what type of LOS paths are likely to be 
encountered within the simulation. However, given that the engagement scenario is 
known prior to the simulation, the results contained within Table 2-4 will aid in the 
determination of the likely level of errors associated with different parts of the 

Code Path Description Range Code Path Description Range 

1-1 Horizontal Path 1km 4-1 Slant Path 30° Elevation 1km 
1-2 2km 4-2 2km 
1-3 5 km 4-3 5 km 
1-4 10 km 4-4 10 km 
1-5 20 km 4-5 20 km 
1-6 50 km 4-6 50 km 

2-1 Slant Path 10° Elevation 1km 5-1 Slant Path 60° Elevation 1km 
2-2 2km 5-2 2km 
2-3 5 km 5-3 5 km 
2-4 10km 5-4 10 km 
2-5 20 km 5-5 20 km 
2-6 50 km 5-6 50 km 

3-1 Slant Path 20° Elevation 1km 6-1 Slant Path 90° Elevation 1km 
3-2 2km 6-2 2km 
3-3 5 km 6-3 5km 
3-4 10 km 6-4 10 km 
3-5 20 km 6-5 20 km 
3-6 50 km 6-6 50 km 

Table 2-3: List of LOS paths tested in validation of SensorVision thermal emission model. 
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Error Indicator 
Code Path Description Range 

MWIR LWIR 

1-1 Horizontal Path 1km 71.3 27.8 
1-2 2km 68.9 28.0 
1-3 5 km 57.7 18.8 
1-4 10 km 42.3 7.0 
1-5 20 km 24.0 0.8 
1-6 50 km 5.4 0 

2-1 Slant Path 10° Elevation 1km 71.3 27.6 
2-2 2km 69.2 28.2 
2-3 5 km 59.7 22.1 
2-4 10 km 49.2 14.3 
2-5 20 km 41.6 10.1 
2-6 50 km 35.8 8.7 

3-1 Slant Path 20° Elevation 1km 71.3 27.5 
3-2 2km 69.4 28.4 
3-3 5km 62.0 24.5 
3-4 10 km 56.4 21.3 
3-5 20 km 52.2 19.9 
3-6 50 km 49.3 19.2 

4-1 Slant Path 30° Elevation 1km 71.2 27.4 
4-2 2km 69.6 28.4 
4-3 5 km 64.2 26.3 
4-4 10 km 60.5 25.1 
4-5 20 km 57.6 24.2 
4-6 50 km 56.2 24.6 

5-1 Slant Path 60° Elevation 1km 71.1 27.0 
5-2 2km 70.2 28.4 
5-3 5km 67.5 28.4 
5-4 10 km 65.4 28.0 
5-5 20 km 64.2 27.7 
5-6 50 km 63.9 29.3 

6-1 Slant Path 90° Elevation 1km 71.1 26.9 
6-2 2km 70.4 28.4 
6-3 5km 68.2 28.6 
6-4 10 km 66.5 28.3 
6-5 20 km 65.6 28.3 
6-6 50 km 65.4 29.9 

Table 2-4: Error indicator vah ies for LOS paths tt isted. 
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engagement. For example, consider an air to ground scenario where a weapon is 
launched from an air platform at a range of 10 km. Say the weapon has a MWIR seeker 
and the engagement is such that the trajectory of the missile follows an approximately 
straight path with an elevation of approximately 10°. From the El values listed in Table 
2-4, it is expected that Sensor Vision generated scenes will have errors associated with the 
thermal emission model that are moderate at the start of the engagement (El value of 
around 49). These errors become progressively worse (El value approaching 71) as the 
missile homes in on the target. Actual errors will also depend on the material 
composition and temperature of the target. 

Having analysed the variability of material emissivities and atmospheric transmission 
coefficients independently, the next question that needs to be answered is the effect of 
both parameters on the SensorVision thermal emission model. In essence, it is necessary 
to determine the variability of the product of the emissivity and transmission coefficient 
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Figure 2-4: Plot of atmospheric transmission coefficient as a function of wavelength 
for a selection of LOS -paths: (a) a horizontal 1 km path; (b) a horizontal 10 km path; 

(c) a vertical 1 km path; and (d) a vertical 50 km path. 
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parameters. A simple and quick method of combining the second moments of the 
emissivity and transmission coefficient is to apply 

(2-21) 

Parameter eET is the second moment value of the emissivity and transmission coefficient 
product, eT and f are the second moment and mean of the transmission coefficient, 
respectively, and et and S are the second moment and mean of the emissivity, 
respectively. Equation (2-21) is a formula used to calculate errors in measurements due 
to multiplication operations. It is only an approximate formula but it should be 
sufficiently accurate for establishing guidelines in the SensorVision validation. The 
application of (2-21) is easier than directly computing the second moment of the 
emissivity and transmission coefficient product. An appropriate error indicator for the 
product can be defined as 

EItx = 100x2eex. (2-22) 

The error between the exact equation and the SensorVision thermal emission model was 
calculated for all 110 materials listed in Table 2-1 and the 36 LOS paths listed in Table 2-3. 
A surface temperature of 300 K was again assumed, and both the MWTR and LWIR 
bands were considered. The resultant data set contained 7920 values, which is too much 
information to present in this report. Table 2-5 summarises the results by displaying the 
statistics of the data set for each LOS path. As evident in these results, errors associated 
with the MWTR band are significant. Average relative errors are 12.5% for a range of 
1 km and increase to a value of 83.8% for a range of 50 km assuming a horizontal LOS 
path. Note that the large value of 83.8% for the 50 km range is caused by the effect of the 
transmission coefficient on the calculated radiances. High attenuation causes the exact 
radiance to be small and the calculated relative error is amplified due to the quotient 
operation in (2-17). For this reason, the relative error values can be misleading and the 
errors expressed as effective temperatures may provide a better indication of the 
inaccuracies associated with the SensorVision thermal emission model. Again, it is 
emphasised that the actual values contained in Table 2-5 should only be considered, 
keeping in mind that a surface temperature of 300 K has been assumed. As will be 
explained in the next section, the chosen temperature of 300 K amplifies any errors 
associated with the MWTR band while reducing errors associated with the LWIR band. 
The El values contained in Table 2-2 and Table 2-4 are more reliable in the formulation 
of conclusions than the results listed in Table 2-5. Furthermore, using El values is much 
easier and quicker than performing the laborious task of calculating relative errors or 
effective temperature differences. 
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Path 

LWIR Band MWIR Band 

Minimum Maximum Average Minimum Maximum Average 
Code 

AL AT AL AT AL AT AL AT AL AT AL AT 

(%) (K) (%) (K) (%) (K) (%) (K) (%) (K) (%) (K) 

1-1 0.7 0.2 33.0 5.5 12.5 2.8 -1.5 -0.5 0.7 0.3 -0.3 -0.2 
1-2 12.3 2.6 40.5 6.3 21.1 43 -2.5 -0.7 1.6 0.7 -0.5 -0.2 
1-3 33.3 6.1 55.9 8.0 39.1 7.0 -5.1 -0.9 4.5 1.4 -0.9 -03 
1-4 48.7 7.4 70.1 10.1 56.2 8.7 -8.0 -0.7 9.0 1.4 -1.2 -0.2 
1-5 62.3 7.8 95.6 11.2 723 9.4 -10.5 -0.1 15.6 0.2 -1.2 -0.0 
1-6 71.1 5.4 118 10.3 83.8 83 -12.5 -0.0 26.7 0.0 -0.7 -0.0 

2-1 0.2 0.1 32.7 5.5 12.1 2.7 -1.4 -0.4 0.6 0.3 -03 -0.2 
2-2 10.6 2.3 39.5 6.2 19.8 4.1 -2.3 -0.7 1.3 0.6 -0.5 -0.2 
2-3 29.3 5.4 52.2 7.4 34.6 6.4 -4.2 -0.9 3.3 1.1 -0.8 -03 
2-4 40.7 6.8 62.8 9.0 47.2 7.8 -5.9 -0.8 5.5 1.5 -1.1 -03 
2-5 50.3 7.5 71.4 10.1 57.4 8.8 -6.8 -0.8 7.0 1.5 -1.1 -03 
2-6 58.8 8.0 81.0 10.9 66.1 9.5 -6.6 -0.7 7.4 1.4 -1.1 -0.2 

3-1 -0.2 -0.1 32.4 5.4 11.8 2.6 -1.3 -0.4 0.6 0.3 -0.3 -0.1 
3-2 9.1 2.0 38.6 6.1 18.8 3.9 -2.1 -0.6 1.2 0.5 -0.5 -0.2 
3-3 25.3 4.7 49.3 7.2 31.2 5.9 -3.5 -0.9 2.5 0.9 -0.7 -03 
3-4 33.7 6.1 56.3 7.9 393 6.9 -4.2 -0.9 3.3 1.1 -0.8 -03 
3-5 38.5 6.6 60.8 8.5 443 7.5 -4.2 -0.8 3.4 1.1 -0.8 -03 
3-6 41.3 6.8 63.4 8.8 47.1 7.8 -3.8 -0.7 3.3 1.0 -0.7 -0.2 

4-1 -0.6 -0.1 32.1 5.4 11.5 2.6 -1.3 -0.4 0.5 0.3 -03 -0.1 
4-2 7.9 1.7 37.8 6.0 17.9 3.8 -2.0 -0.6 1.0 0.5 -0.4 -0.2 
4-3 21.4 4.1 46.8 6.9 28.2 5.5 -3.0 -0.8 2.0 0.8 -0.6 -03 
4-4 27.6 5.1 51.4 7.3 333 6.2 -3.1 -0.8 2.1 0.8 -0.7 -0.3 
4-5 31.1 5.5 54.1 7.6 36.2 6.6 -3.0 -0.7 2.1 0.8 -0.6 -0.2 
4-6 33.3 5.9 56.1 7.7 38.5 6.9 -2.3 -0.5 2.0 0.7 -0.4 -0.2 

5-1 -1.5 -0.3 31.6 5.3 10.8 2.4 -1.2 -0.4 0.5 0.2 -03 -0.1 
5-2 5.5 1.2 36.3 5.9 16.1 3.5 -1.7 -0.5 0.8 0.4 -0.4 -0.2 
5-3 13.5 2.8 41.7 6.5 22.2 4.5 -2.0 -0.6 1.1 0.5 -0.5 -0.2 
5-4 16.6 3.3 44.1 6.7 24.7 4.9 -2.0 -0.6 1.0 0.4 -0.4 -0.2 
5-5 17.7 3.5 45.1 6.8 25.7 5.1 -1.8 -0.5 0.9 0.4 -0.4 -0.2 
5-6 19.7 3.8 46.6 7.0 27.4 5.4 -1.2 -0.3 0.8 0.3 -0.2 -0.1 

6-1 -1.7 -0.4 31.4 5.3 10.6 2.4 -1.2 -0.4 0.4 0.2 -03 -0.1 
6-2 4.8 1.1 35.8 5.8 15.6 3.4 -1.6 -0.5 0.8 0.4 -0.4 -0.2 
6-3 11.3 2.4 40.4 6.3 20.6 43 -1.8 -0.5 0.9 0.4 -0.4 -0.2 
6-4 13.7 2.8 42.4 6.5 22.7 4.6 -1.7 -0.5 0.8 0.4 -0.4 -0.2 
6-5 14.7 3.0 43.1 6.6 23.5 4.7 -1.5 -0.4 0.7 0.3 -03 -0.2 
6-6 16.3 3.3 44.4 6.7 24.8 5.0 -1.0 -0.3 0.6 0.3 -0.2 -0.1 

Table 2-5: Summary of errors generated by SensorVision thermal emission model including 
both material emissivity and atmospheric transmission coefficient data. Errors are represented 
in terms of percentage error (AL) relative to the exact radiance, and the difference (AT) between 

SensorVision and exact effective temperatures. 
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2.5 Effect of Variability of Planck's Blackbody Curve 

Planck's blackbody equation (given by (2-1)) is a well known function, which has a 

temperature dependence. Figure 2-5 contains plots of Planck's curves as functions of 

temperature. As evident in these plots, the peak of Planck's curve moves to the shorter 
wavelengths and increases in magnitude as the temperature is raised. 

The variability of Planck's blackbody curve within the waveband of interest has an 
impact on the errors associated with the SensorVision thermal emission model. Even 
though the variations in the emissivity and transmission coefficient parameters are the 

actual source of errors, the variability of Planck's curve substantially affects the error 
magnitudes. This statement is supported by the plots shown in Figure 2-6. In Figure 2-6, 
the mean relative error of the SensorVision thermal emission model is plotted as a 
function of temperature. The mean relative error is computed by calculating (2-17) for the 
110 materials in the materials database, applying a modulus function to remove any sign 
dependence, and detenrtining the mean over all materials. Note that the atmospheric 
transmission coefficient is assumed to have a value of one to simplify the calculations. 

Figure 2-7 contains a plot of the El values associated with the variability of Planck's 
blackbody curve in the waveband of interest. The El value is calculated using 

1400 

T = 300 K 

Figure 2-5: Plot of Planck's blackbody curves as a function of temperature. 
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EIbb = 100x2 
(Ln^ -Ln   ) dk 

(X2-'kl) 
(2-23) 

bb . 
where Ln^ is the Planck's blackbody curve normalised by its maximum value in the 
waveband of interest. Normalisation is required to limit Ln^ to values between zero 
and one, and ensure the El value remains in the range zero to 100. 

400 600 800 
Temperature (K) 

400 600 800 
Temperature (K) 

1000 

Figure 2-6: Mean relative error between SensorVision thermal emission model and exact model 
as a function of temperature. Atmospheric transmission coefficient is assumed to be unity and 

all 110 materials are included in the computation of the mean relative error. 
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Figure 2-7: Plot of error indicator value of Planck's blackbody curve in waveband of interest as 
a function of temperature. 
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The key feature to note in Figure 2-6 and Figure 2-7 is the similarity between the curves. 
Clearly, the variability of the Planck's curve in the waveband of interest (quantified by 
the El value) has an effect on the SensorVision errors. Furthermore, the effect appears to 
be linear in nature (at least in the temperature range 300 K to 1000 K). The minimum 
value of the El parameter in the MWIR and LWIR bands correspond to the temperatures 
of 740.2 K and 293.7 K, respectively. This result is significant because materials used in 
simulations tend to have temperatures near ambient air temperature, which is near the 
optimal5 temperature for the LWIR band. Again, it appears that the SensorVision 
thermal emission model is more suited to LWIR simulations. However, simulations 
involving hot bodies (such as hot plumes and hot engine parts in air engagements) may 
result in greater errors in the LWIR band compared to the MWIR band. For instance, at 
a temperature of 700 K, the El value in the MWIR band is 12.6 compared to 37.3 in the 
LWIR band. The mean relative error at 700 K (as plotted in Figure 2-6) is 0.2% in the 
MWIR band compared to 0.46% in the LWIR band. 

Due to the apparent linear relationship between the SensorVision thermal emission 
errors and the El values for the Planck's blackbody curves, a total error indicator value 
can be estimated by applying 

Eh 
100 

EItotai = T^^EIbb. (2-24) 

The error indicator value £/£T is given by (2-22) and EIbb is given by (2-23). The total El 
value is again limited to the range zero to 100, where a value of 100 corresponds to the 
worst possible case. Again, the concept behind the El value is to aid users in the 
construction of SensorVision simulations for HIL testing. 

2.6 Chapter Summary 

In this chapter, the SensorVision thermal emission model (as applied to solid opaque 
Lambertian scene materials) was validated. The validation involved determining the 
level of errors associated with the application of the SensorVision approximation 
whereby spectral terms are moved outside of the spectral integration and replaced by 
their in-band averaged values. The two spectral terms affected were the material's 
spectral emissivity and the spectral atmospheric transmission coefficient. The effect of 
moving each of these parameters outside of the integration was determined 
independently and a figure of merit referred to as the error indicator (El) was proposed. 
The development of the El was one of the significant outcomes of this validation effort. 
The total combined El value, given by (2-4), strongly reflects the error magnitude 

5- The temperature is optimal in the sense that it minimises the errors associated with the SensorVision 
thermal emission model. 
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associated with the SensorVision thermal emission model, and it can be determined 
much quicker than the direct computation of the actual error. The error indicator should 
be used in the construction phase of a HIL simulation to identify situations and scenarios 
whereby the performance of SensorVision, in producing thermal emission signature 
components, may be deficient. 

It was concluded from the validation effort that the SensorVision thermal emission 
model is more suited to LWIR simulations. The reasons for this conclusion are three-fold: 

• spectral emissivities of many materials tend to have lower variability in the LWIR 
band compared to the MWTR band; 

• the spectral atmospheric transmission coefficient does not fluctuate significantly in 
the LWIR band; and 

• the optimal temperature in the LWIR band corresponds to a value near ambient air 
temperature and objects in simulations tend to have temperatures near ambient. 

The validation effort has shown that significant errors can be generated by the 
SensorVision thermal emission model, especially for the MWIR case. However, this 
statement does not necessary preclude the use of SensorVision in MWIR simulations 
since the actual level of errors is strongly dependent on the materials, engagement 
scenarios, and actual waveband employed in the simulation. It is possible to minimise 
SensorVision related errors by carefully constructing simulations using the El as a guide. 
Appendix A contains a summary explaining the use of El values during simulation 
construction. 
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3.  Validation of the Temperature Prediction Model1 

In the previous chapter, the SensorVision thermal emission model was validated 
assuming the surface temperatures of the materials were known. In this chapter, the 
temperature prediction model employed by SensorVision will be experimentally 
validated against empirical data. 

3.1 The SensorVision Temperature Prediction Model 

SensorVision comprises a software library and two database construction tools, called 
the MAT™ (MOSART Atmospheric Tool) and the TMM™ (Texture Material Mapper). 
The software library performs the real-time radiometric calculations and provides Vega 
with the required functionality to render IR scenes. Both database construction tools are 
used in preprocessing operations prior to the real-time simulation. The purpose of the 
TMM utility is to allow the user to assign material properties (reflectance) to textures, 
which are pasted on object models. The MAT generates databases for atmospheric 
quantities and surface temperatures of scene materials. This chapter focuses on the MAT 
since it is the SensorVision component responsible for computing material surface 
temperatures. 

The MAT is essentially a SensorVision interface for the MOSART2 (Moderate Spectral 
Atmospheric Radiance and Transmittance) code. The MAT takes a user input file, 
executes the MOSART program, and records the MOSART output results into database 
files with the format required by SensorVision. Consequently, the validation effort 
described in this chapter is essentially a validation of the temperature prediction model 
employed by the MOSART code with the addition of the MAT interface. The component 
of the MOSART program that performs the surface temperature computations is called 
the TERTEM (Terrain Temperatures) code. The TERTEM algorithm uses a 
one-dimensional three-layer thermal model [4], consisting of a surface layer and two 
sub-layers. The surface material has some prescribed thickness and is represented by six 
heat transfer parameters: solar absorption, thermal emittance, thermal conductance, 
specific heat, density, and characteristic length. Both sub-layers are assigned a material 
type with the first sub-layer given a thickness property. The second sub-layer is assumed 
to be infinite in depth. The TERTEM algorithm takes into account four heat transfer 
fluxes: radiation, convection, conduction, and evaporation. Radiation inputs are from 
only the sun and the sky. Effects of varying air temperature and humidity throughout 
the day are considered, but the wind speed and moisture content of materials are 

1- Most of the contents in this chapter have already been reported in reference [3]. It has been included in this 
report for the sake of completeness. 

2' MOSART is a U.S. Government standard atmospheric code developed by Phillips Laboratory, Department 
of Geophysics, Air Force Material Command, Handscom AFB, Massachusetts. 
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assumed to be constant. Also, due to the one-dimensional model, any lateral transfer of 

heat is neglected. The TERTEM program should yield accurate results for most natural 

and man-made surfaces (such as soils, rocks, low-cropped vegetation, asphalt, and 
concrete). However, it cannot accurately model high vertical vegetation (such as trees) 

due to the dominant effect of lateral heat transfer processes, or operated vehicles (such 

as tanks, and aeroplanes) due to the significant influences of internal heat sources on 

surface temperatures. 

The SensorVision predicted temperature results used in this validation effort where 

obtained directly from the MAT. The MAT input file allows the user to specify the 

atmospheric states, the spectral bands of interest with sensor spectral responses, and the 

range of material surface and observer geometries expected in the simulation. Heat 

transfer parameters for materials can also be modified by the user. Table 3-1 contains the 

list of material heat transfer parameters that can be adjusted by the user, while Table 3-2 

contains the list of the MAT user input parameters. Once the MAT program is executed, 
three output files are generated: a file containing databases of solar atmospheric 
quantities (with parameters representing solar radiance, skyshine radiance, atmospheric 
path radiance, and atmospheric path transmission); a file containing databases of lunar 
atmospheric quantities (with parameters representing lunar radiance, emitted and 
skyshine radiance, emitted and scattered atmospheric path radiance, and atmospheric 
path transmission); and a file containing the database of predicted surface temperatures. 

Only the last output file is of interest in this report since it contains the MAT (and the 

MOSART code) predicted surface temperatures for the user-chosen materials given 
some specified geographical location, atmospheric state, and spectral band. 

Heat Transfer Parameter 

Label 
Default Material 
Solar Absorptivity 
Thermal Emissivity 
Characteristic Length 
Evaporation Index 
Specific Heat 
Thermal Conductivity 
Density 
Surface Layer Thickness 
Sub-layer 1 Thickness 
Sub-layer 1 Material 
Sub-layer 2 Material 

Table 3-1: List of heat transfer parameters. 
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In this chapter, the SensorVision temperature prediction models are validated by 

comparing the MAT generated results against measured temperatures. This type of 

strategy can be described as a functional and experimental validation. The term 

functional refers to the fact that the physics of the model are not considered, rather only 

the model outputs are validated. The term experimental describes the fact that empirical 

data is used to validate the model. The measured data used in the validation were 

collected in trials at a location in northern Australia. The air temperature and the 

temperature of a concrete sample were recorded over a period of three years to enable 

MAT Input File Parameters 

Latitude, Longitude (°) 
Year, Month, Day 

£ Model Atmosphere Name (e.g. TROPICAL_SUMMER) $ 
Temperature (Cold, Mean, Hot) £ 

3 3 Humidity (Dry, Mean, Wet) 

i™ Wind (Calm, Mean, Windy) 
S? 

< Cloud Cover (Clear, Cloudy) 
Cloud Base Altitude (km) 
Visibility Range (km) 

a »5 Spectral Resolution (cm"1) 
Number of Spectral Response Pairs 

■ft3 

CD   « 
a  S a  2. 

a pa 
W3 

(For each spectral response pair) Wavelength (mm), Response ^3 a 
s- 

Number of Materials 
S2 Material Names 

Number of Surface Altitudes 
£ Surface Altitudes (km) 
2 Number of Surface Orientation Azimuths 

PH Azimuths (°) 
'S Number of Surface Orientation Slopes 
■4-» 
08 Slopes (°) 
s Number of Times 

Times (hours in local standard time) 

Number of LOS (Line of Sight) Ranges 
0) LOS Ranges (km) 
s Number of Observer Altitudes 
,2  « Altitudes (km) 

85    g 
u   as 

Number of LOS elevations 
LOS elevations (°) 

>•    «8 Number of Solar/Lunar Elevations 
4»   ™ 

ja Elevations (°) 
O Number of Solar/Lunar to Observer Azimuths 

Azimuths (°) 

Table 3-2: List of the MAT input file parameters. 
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the monthly averages of the daily temperature profiles to be determined. SensorVision 
generated temperature profiles were then compared with the monthly averages to 
determine the accuracy of the temperature prediction model. All simulations were run 
using version 3.1.1 of the MAT (packaged with SensorVision version 3.4.1.4, and Vega 
version 3.4), on an Onyx2™ SGI machine with operating system IRIX™ 6.5. The version 
of the MOSART code employed by SensorVision is not known, and there is the 
possibility that the MOSART code has been modified by the SensorVision developers. 

3.2 Processing of Experimental Data 

The measured temperature data were collected in 1991, 1992, and 1993, during an 
experimental trial with a purpose unrelated to the SensorVision validation effort. During 
these trials, thermal sensors were used to automatically record the air temperature and 
the temperature of a concrete sample at a location in northern Australia. The concrete 
specimen was a 350 mm layer of Portland cement on top of a 150 mm layer of gravel. Two 
temperature sensors were buried in 1 inch holes drilled into the surface of the concrete 
sample at different spatial locations. The holes were refilled with mortar. One air 
temperature and two concrete surface temperature readings were simultaneously 
recorded every 10 minutes throughout each 24-hour day. Data were collected for every 
month of the year, except December. However, not every month of each year or every 
day of each month was represented in the sample set. Table 3-3 lists the days in which 
some data were collected. 

Before the experimental data could be compared against SensorVision generated results, 
some filtering was required to remove any data sets that were considered to be unreliable 
or erroneous. A temperature reading that is affected by a thermal sensor malfunction or 
is an anomalous measurement due to abnormal conditions is referred to as an outlier. 
Whenever an outlier was identified within a data set, the entire data set was removed 
from the sample space in order to reduce the complexity of the statistics calculations. In 
addition, incomplete data sets containing measurements for only part of the day were 
also removed from the sample space. 

Figure 3-1 (a) shows plots of the raw diurnal air and concrete temperature profiles for the 
30 days of April over the years 1991 to 1993. As evident in the raw data plots for the 
concrete sample, several data sets are clearly erroneous. For example, several data sets 
contain negative temperature readings, which are improbable given the tropical climate 
of northern Australia. In comparison, very few data sets in the air temperature profiles 
contain obvious outliers. 

Scrutiny of the concrete diurnal temperature profiles revealed that there were two types 
of obvious outliers associated with sensor malfunctions. A temperature of 99.9 °C was 
recorded when a failure in the thermal sensor occurred, while a large temperature 
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variation between consecutive temperature readings indicated a DC (direct current) bias 

problem within the sensor. Both outlier types were easily identified and the data sets 

containing these outliers were removed from the sample space. The identification of 

other outlier types was difficult due to an incomplete knowledge of the sensor 

characteristics, the measurement process, and the conditions under which each 

temperature reading was recorded. It was not easy to determine if a peculiar feature of a 

temperature profile was due to an erroneous measurement or due to a valid 

environmental condition. The only information that could be used in the detection of 

non-obvious outliers was the fact that three temperature readings (one air temperature 

and two concrete temperatures) were recorded simultaneously. All three diurnal 

1991 1992 1993 

January 30,31 
(2 days) 

February 1,4,5,18,19 
(5 days) 

12-28 
(17 days) 

March 26-31 
(6 days) 

2-31 
(30 days) 

1-31 
(31 days) 

April 1-30 
(30 days) 

1-30 
(30 days) 

1-30 
(30 days) 

May 1-31 
(31 days) 

1-31 
(31 days) 

1-31 
(31 days) 

June 1-30 
(30 days) 

1-30 
(30 days) 

1-30 
(30 days) 

July 1-31 
(31 days) 

1-31 
(31 days) 

1-31 
(31 days) 

August 1-31 
(31 days) 

1-31 
(31 days) 

1-31 
(31 days) 

September 1-30 
(30 days) 

1-30 
(30 days) 

1-26 
(26 days) 

October 1-31 
(31 days) 

1-26,28-31 
(30 days) 

November 1-11 
(11 days) 

1-9,12-30 
(28 days) 

December 

Table 3-3: List of days during 1991,1992, and 1993 in which some temperature 
measurements were recorded. 
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temperature profiles, associated with a particular day and data set, should be reasonably 

well correlated because they were all measured under identical environmental 

conditions. In particular, the two concrete temperature profiles recorded during any day 

should have a high degree of correlation. An outlier can therefore be recognised as a 

temperature profile feature that is not mimicked in the other two temperature profiles 

measured during that same day. The three diurnal temperature profiles were plotted and 

compared for all data sets, and the identification of outliers (by a human operator) was 

Air Temperature Concrete Temperature 

5 10 15 20 
Local Standard Time (a) 

Air Temperature 

5 10 15        20 
Local Standard Time 

Concrete Temperature 

5 10 15 20 
Local Standard Time 

5 10 15        20 
Local Standard Time 

Figure 3-1: Plots of the (a) raw, (b) filtered, and (c) the statistics of the data sample 
space for measured air and concrete daily temperature profiles for the month of April 
(1991,1992, and 1993). The data statistics are plotted as error bars with a mean and 

an error of one standard deviation. 
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performed. The process was subjective and conducted with the policy that only data sets 
with features that were blatant outliers were discarded. Figure 3-2 contains examples of 
diurnal temperature variations for two days. Figure 3-2(a) shows temperature profiles in 
which no outliers were identified, and Figure 3-2(b) shows an example of an outlier 
feature. In the first case, all three plots are well correlated while in the second case, the 
dashed line contains a spike near 4 p.m. that is not evident in the other two temperature 
profiles. The data set corresponding to the dashed line in Figure 3-2(b) was removed 
from the sample space. Note that the sudden decrease in temperature observed near 3 
p.m. in Figure 3-2(b) may have been misinterpreted as an outlier if each temperature 
profile was individually scrutinized. However, because all three temperature profiles 
measured that day exhibited the same feature, it must be concluded that some valid 
environmental effect (such as a cool change or sudden rainfall) caused the rapid decrease 
in temperature. 

Table 3-4 lists the total number of raw data sets, the number of data sets rejected on the 
basis that the records were incomplete or contained outliers, and the final sample space 
size for each month (combining the 1991, 1992, and 1993 data). Note that the large 
numbers of rejected data sets in the concrete sample space is mainly due to temperature 
readings that indicated sensor malfunctions. The embedding of the thermal sensors into 
the concrete sample caused a reduction in the reliability of the sensors. With reference to 
Table 3-4, the final sample space size for January is too small to be useable, hence January 
was not considered during the validation procedure. The number of data sets for 

5 10 15 
Local Standard Time 

5 10 15 20 
Local Standard Time 

U 

20 
Sensor #2 

U   60 

3 
2   40 o 

I 
5 10 15 
Local Standard Time 

(a) 

20 
20 

Concrete Temperature 

Sensor #1 Sensor #2 

5 10 15 
Local Standard Time 

(b) 

20 

Figure 3-2: Examples of the temperature profile comparisons used to identify outliers: 
(a) temperature profiles for 28 April 1992, and (b) temperature profiles for the 

5 February 1992, showing an outlier in the sensor #2 concrete temperature profile. 
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February, March and November were considered adequate while the size of the sample 
spaces associated with the remaining months (excluding December) were deemed more 
than sufficient for the validation purpose. It is assumed that the sample space for every 
month except January and December is sufficiently large such that any atypical or 
unusual feature of a diurnal temperature curve will be averaged out in the statistics, so 
as to not significantly affect the mean results for a particular month. 

Figure 3-1 (b) contains plots of the filtered data for the air and concrete daily temperature 
profiles for the month of April. In particular, note that the filtered data for the concrete 
temperature profiles are significantly cleaner than the original raw data (shown in 
Figure 3-l(a)). The filtered data for the air temperature case does not vary significantly 
from the raw data because the thermal sensor recording the air temperatures was not as 
prone to malfunctions as the thermal sensors measuring the concrete temperatures. 

Having filtered the experimental data for outliers, the mean and standard deviation of 
the temperature profiles were computed for each month. The statistics of the air and the 
concrete temperature profiles for the month of April are shown in Figure 3-1 (c). The error 

- Air Temperature Profiles Concrete Temperature Profiles 

Data 
Sets 

Rejected 
Sets Total 

Data 
Sets 

Rejected 
Sets 

Total 

January 2 1 1 4 2 2 

February 22 4 18 44 12 32 

March 67 4 63 134 54 80 

April 90 3 87 180 41 139 

May 93 3 90 186 40 146 

June 90 4 86 180 38 142 

July 93 2 91 186 35 151 

August 93 1 92 186 33 153 

September 86 4 82 172 34 138 

October 61 3 59 122 9 113 

November 39 3 36 78 27 51 

December - - - - - - 

Table 3-4: Summary of sample space sizes for each month listing the number of raw data sets, 
the number of data sets that were incomplete or contained outliers, and the final total sample 

space size. 
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bars in these plots represent the mean profile with an error of one standard deviation. 
Assuming an unbiassed sample space and Gaussian statistics, 68.25% of all 
temperatures (measured or predicted for this particular location) would be expected to 
lie within one standard deviation of the mean at any instant in time. A proportion of 
95.46 % and 99.73 % should lie within two and three standard deviations of the mean, 
respectively. The plots of the statistics for the months from February to November can be 
found in Figure 3-5 and Figure 3-6. 

3.3 Validation of Temperature Prediction Model 

Complete 24-hour diurnal temperature profiles were computed using the MAT for the 
materials air and concrete for the specified longitudinal and latitudinal coordinates of 
the location in northern Australia being considered. Air temperatures were computed by 
stipulating a blackbody in the material specification with an altitude of 108 m. This 
altitude was chosen because the location in northern Australia has an elevation of 108 m 
above sea level. Results were obtained for every month of the year, and the standard heat 
transfer parameter files included with the SensorVision package were employed in the 
simulations. 

Several MAT characteristics were noted during the validation process. In the case of the 
air temperature computations, the same MAT results were obtained regardless of the 
year specified. In addition, the temperatures were identical for the first day to the 
penultimate day of each month. Temperature predictions for the last day of each month 
matched the results for the next month, provided the specified month was February, 
April, June, July, or November. Temperature predictions for the last day of January, 
March, May, August, September and October were unique within the year. The MAT 
results for all days in December were identical. Figure 3-3 summarises the MAT 
characteristics described above by graphically illustrating the days of the year for which 
identical air temperature profiles are predicted. In the case of the concrete temperature 
profiles, results were unique for all days in the year. However, the variations from one 
day to the next were minor and incremental except between days that also experienced 
a change in the air temperature predictions. Differences in results were noted between 
years but these differences were considered negligible. The reasons for these peculiar 
patterns of predicted temperature profiles as a function of the day of year are unknown. 
Although these MAT characteristics have no perceivable affect on the validation effort, 
they were mentioned above as a matter of curiosity and for the sake of completeness. In 
the validation effort, the air and concrete surface temperatures were computed for every 
hour during the 15th day of each month for the year 1991. These results were considered 
representative of typical MAT predicted values for each month of the year. Other 
pertinent MAT input parameters used in the simulations include: the default 
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atmospheric model for the location and day of year; mean temperature, humidity, and 
wind; clear cloud cover with a cloud base altitude of 1 km; and a visibility range of 23 km. 

Initially, the MAT predicted temperatures were compared against records obtained from 
the (Australian) Bureau of Meteorology. For the particular location in northern Australia, 
averaged 9 a.m. and 3 p.m. air temperatures for each month (collected over 14 and 13 
years, respectively) were available. Figure 3-4 shows the comparisons between the MAT 
predicted air temperatures and the Bureau of Meteorology data. As evident in the plots, 
reasonable agreement is attained for the 9 a.m. air temperature results for all months, 
except September, October and November. The MAT consistently under-predicts the 
3 p.m. air temperatures for this location. 

The MAT generated diurnal temperature profiles and the experimental data (processed 
in Section 3.2) are plotted in Figure 3-5 and Figure 3-6. The air temperature diurnal 
profiles are shown in Figure 3-5 while Figure 3-6 contains the concrete diurnal 
temperature profiles. It is apparent from these plots that the MAT generated results do 
not compare well to the experimental data. With regard to the air temperature profiles, 
the predicted results have significantly smaller diurnal ranges than that exhibited by the 
measured data. There is a provision in the MAT program to include an extension in the 
MAT input file to calibrate the computed temperature profiles. In this extension, an air 

January 
February 

March 
April 
May 
June 
July 

August 
September 

October 
November 
December 

MUU Jan. 1 - Jan. 30 
■BBB Jan. 31 
PPF1 Feb. 1 - Feb. 27 
rTTl Feb. 28 - Mar. 30 
Wm~\ Mar. 31 
Mi Apr. 1 - Apr 2C> 
EBB Apr. 30 - Mav 30 
rTTl May 31 
FÜP1 Jun. 1 -Jun. 29 

■1 Jun. 30-Jul. 30 
IM4--1 Jul.31- Aug. 30 
MM Aug. 31 
MM Sep. 1 - Sep. 29 
— Sep. 30 
BUB Oct. i - Oct. 30 
rm Oct. 3i 
FTTl Nov. 1 - Nov. 29 

Figure 3-3: Diagram showing the days of the year for which the MAT predicts 
identical daily temperature profiles. 
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temperature and time of day are specified. The air temperature curves are then 
calibrated, such that the specified air temperature is obtained at the specified time. The 
net effect of the extension is to move the predicted temperature profiles up or down, but 
there is negligible effect on the diurnal range. Consequently, the MAT generated 
temperatures cannot be made to coincide with the empirical data to any acceptable level. 
This problem is attributed to differences between the standard atmospheric (tropical 
summer and tropical winter) models employed by the MOSART code and the actual 
atmospheric profile at the location under consideration. The MOSART code was 
predominantly developed for application to northern hemisphere regions, hence 
problems with its application to this southern hemisphere tropical zone was not entirely 
unexpected. Discussions with MultiGen-Paradigm have revealed that a modification in 
the MOSART code is planned in future upgrades of the MAT, which will allow users to 
define appropriate atmospheric profiles for a geo-specific location. This functionality is 
expected to appear in version 3.5 of SensorVision. Until user-specified atmospheric 
profiles are supported, it is concluded that the MAT cannot satisfactorily predict air 
temperatures for the geo-specific location in northern Australia being considered. 

The predicted concrete temperature profiles also show poor agreement with the 
experimental data. Although the shape of the curves are similar, most of the predicted 
temperature data He outside of the error bars plotted in Figure 3-6. However, unlike the 
air temperature case, the error in the MAT predicted concrete temperatures may be due 
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Figure 3-4: Comparisons of the MAT generated results with mean 9 a.m. and 3 p.m. air 
temperatures obtained from the (Australian) Bureau of Meteorology. 

39 



DSTO-RR-0212 

40 

u 
30 

g.20 
£ 

10 

February 

HESS! 

•fff   Measured Data 

•••   MAT Results 

5 10 15 20 
Local Standard Time 

5 10 15 20 
Local Standard Time 

5 10 15 
Local Standard Time 

5 10 15 
Local Standard Time 

5 10 15 
Local Standard Time 

40 

G 
^30 

£20] 

10 

August 

1M5V. JSP ^•iiil 

5 10 15 
Local Standard Time 

20 

5 10 15 
Local Standard Time 

20 

5 10 15 
Local Standard Time 

Figure 3-5: Comparison between the MAT generated and measured diurnal air temperature 
profiles for the months from February to November. 
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Figure 3-6: Comparison between the MAT generated and measured diurnal concrete 
temperature profiles for the months from February to November. 
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to incorrect heat transfer parameters for the actual concrete sample used in the trials. In 
a more rigorous validation effort, the heat transfer parameters for the concrete sample 
would be measured. Unfortunately, physical access to the concrete sample was not 

possible, hence a more heuristic approach of approximating the heat transfer parameters 

was adopted [5]. The heat transfer parameters were modified until a good match was 

achieved between the predicted concrete temperature profiles and the empirical data. 
The effects of individually varying solar absorptivity, thermal emissivity, specific heat, 
thermal conductivity, and material density on the concrete diurnal temperature profile 
computed for April are shown in the plots of Figure 3-7. Nearly all features of the 
temperature profile could be varied. The exception was the temperature rrrinimum 
(occurring around 7 a.m.), which could not be made to coincide well with the empirical 

data while simultaneously mamtaining a realistic thermal emissivity value. This 
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Figure 3-7: Graphs illustrating the effect of varying heat transfer parameters on the MAT 
predicted concrete diurnal temperature profiles for the month of April. 
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problem is most likely due to the MAT incorrectly predicting the air temperatures. A fix 
was obtained by exploiting the MAT extension (described above) to artificially move the 
temperature profiles up. The use of the MAT extension is only a superficial solution in 
the sense that it would be ineffective if more than one material was specified in the MAT 
input file. A proper solution to the problem requires modifications to be made to the 
MOSART program to ensure that air temperatures are accurately predicted for the 

geo-specific location considered. 

Using essentially a trial-and-error process, a combination of heat transfer parameters 
that resulted in a good general agreement between the MAT generated concrete 
temperature profiles and the measured data was obtained. The modified heat transfer 
parameter values are listed in Table 3-5. Note that these values are sensible and realistic. 
The significant change in value of thermal conductivity of concrete from 1.73 to 0.5 
Wm^K"1 is reasonable, given that a figure of 0.84 Wm^K"1 was quoted in a textbook [6]. 
The final concrete temperature profiles are plotted in Figure 3-8. Note that the values of 
the 7 a.m. temperatures defined in the MAT extensions were varied for each month to 
counter the problem of incorrectly predicted air temperatures. Furthermore, the values 
employed were unrealistic (ranging from 27 °C to 42 °C) due to the fact that the MAT 
generated air temperatures had an erroneous diurnal range compared with the empirical 
data. The 7 a.m. value used in the MAT extension for each month is indicated in the top 

Heat Transfer Parameter Original Modified 

Label Concrete Concrete 

Default Material Concrete Concrete 

Solar Absorptivity 0.6681411 0.4 

Thermal Emissivity 0.9333010 0.9 

Characteristic Length 1.00 m 1.00 m 

Evaporation Index No No 

Specific Heat 0.88 J grn1 K"1 0.7 J gm_I K'1 

Thermal Conductivity 1.73 Wm^K"1 0.5 W m"1 K"1 

Density 2.4 x lO"6 gm mf3 2.3 x 10'6 gm m"3 

Surface Layer Thickness 0.35 m 0.35 

Sub-layer 1 Thickness 0.15 m 0.15 

Sub-layer 1 Material Road Gravel Road Gravel 

Sub-layer 2 Material Packed Dirt Packed Dirt 

Table 3-5: List of original and modified heat transfer -parameters. 
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Figure 3-8: Comparison between the MAT results with modified concrete heat transfer 
parameters and measured diurnal concrete temperature profiles. 
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right comer of the relevant plots in Figure 3-8. The overall agreement of the MAT 
predicted concrete temperatures using the modified heat transfer parameters with the 
measured data is extremely good for most months. The poorest agreement was obtained 
in February, and these results are still considered reasonable. Recall that the size of the 
sample space of the measured data in February was only considered adequate, hence a 
high level of confidence is not associated with the statistics corresponding to this month. 

The variation of material heat transfer parameters to obtain an acceptable match between 
measured and predicted temperature data is a feasible technique for generating 
validated material temperature profiles. However, the method can only be employed 
once the problem with the air temperature predictions has been fixed. 

3.4 Chapter Summary 

Results of an experimental validation of the SensorVision temperature prediction model 
were presented in this chapter. SensorVision generated diurnal air and concrete 
temperature profiles were compared against experimental data obtained from a location 
in northern Australia. It was observed that the SensorVision results did not compare well 
with the empirical data. In particular, the predicted diurnal air temperature ranges were 
significantly smaller than those measured. These inaccuracies were attributed to 
differences between the actual atmospheric profile at the geo-specific location and the 
standard atmospheric models employed by the MOSART code. This problem should be 
resolved in future software upgrades of SensorVision, which are expected to include 
functionality for users to custom define atmospheric profiles. Until user-defined 
atmospheric profiles are supported in the MAT, the physical accuracy of the temperature 
models employed by SensorVision cannot be properly evaluated. 

Predicted concrete temperature profiles compared well with the empirical data after 
modifications were made to the concrete heat transfer parameters. However, it was 
necessary to use a MAT extension to artificially inflate air temperatures in order to 
achieve good agreement between predicted and measured results. The use of the MAT 
extension is only a superficial solution in the sense that the air temperature values 
employed were unrealistic, and the use of the extension would be ineffective if more than 
one material was specified in the MAT input file. A proper solution to the problem 
requires modifications to be made to the MOSART program to ensure that air 
temperatures are accurately predicted for the geo-specific location considered. 

45 



DSTO-RR-0212 

46 



DSTO-RR-0212 

4.   Conclusions and Further Work 

This report presented the results from a validation conducted on the SensorVision 
thermal emission model. The thermal emission model essential involves two 
components: the prediction of an object's surface temperature given the surrounding 
conditions; and the calculation of the radiance incident on a sensor due to that object as 
a result of thermal emission processes. The validation effort described in this report 
considered the temperature prediction model as well as the radiance computation 
model. 

The SensorVision radiance computation model was validated mathematically against an 
accurate non-real time thermal emission model. SensorVision employs an 
approximation whereby spectral terms within the thermal emission equation are moved 
outside of the spectral integration and replaced by their in-band averaged values. This 
approximation is required to enable real-time operation. The effect of the approximation 
on the accuracy of the SensorVision thermal emission model was analysed and a figure 
of merit was developed to enable quick determination of likely error levels. The figure of 
merit was based on the second moment of the spectral variables and was referred to as 
the error indicator or El. The main purpose of the El is to aid users during simulation 
construction to identify scenario components that may impact on the integrity of the HIL 
simulation. The main conclusion that can be drawn from the validation of the radiance 
computation model is that SensorVision appears to be more suited to LWIR simulations 
than MWTR simulations. The reasons for this conclusion are three-fold: 

• the variability of the spectral emissivities of materials tend to be lower in the LWIR 
band compared to the MWIR band; 

• the spectral atmospheric transmission coefficient does not vary much in the LWER 
band compared to the MWIR band; and 

• simulations tend to involve objects with temperatures near ambient temperature, 
which results in smaller error levels in the LWER band and higher error levels in 
the MWIR band. 

Given that IR phenomenology in the LWIR band is emission dominated, it can be 
concluded that SensorVision can be confidently employed in HIL simulations involving 
LWIR seekers (provided the prediction or assignment of surface temperatures is 
accurate). HIL simulations involving MWIR seekers, using SensorVision, should be 
constructed with care. The validation has shown that significant errors can be generated 
by the SensorVision thermal emission model in the MWIR band. These errors can be 
mitigated by carefully choosing the materials and engagement geometries employed in 
the simulation scenarios. Furthermore, simulations associated with narrower bands than 
the full 3 to 5 urn band tested during the validation are likely to yield lower levels of 
error. Confidence in the use of SensorVision for MWIR HIL simulations requires the 
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validation of reflection components of the IR radiometric equation, since reflection 
phenomena are significant in the MWIR band. 

SensorVision employs a standard atmospheric program called the MOSART code to 
predict surface temperatures of objects prior to the real-time simulation. The 
temperature prediction model was validated against experimental data obtained from 
trials conducted in northern Australia. During these trials, daily temperature profiles 
were measured for air and a concrete sample. In the validation, the MOSART predicted 
temperatures were compared against empirical data and it was shown that the 
temperature prediction model was not accurate for the particular location in northern 
Australian. The reason for the poor agreement between the predicted and empirical data 
was attributed to differences between the tropical atmospheric model used by the 
MOSART code and the atmospheric profile at the location in northern Australia. The 
inability of SensorVision to allow users to specify custom atmospheric profiles was 
considered a significant problem in the current software. Fortunately, the next release of 
SensorVision is expected to provide the functionality for user defined atmospheric 
profiles. The results for the concrete temperature profile comparisons showed the 
importance of providing correct material heat transfer parameters. Heat transfer 
parameters can be derived heuristically by matching the SensorVision generated 
temperature profiles with the empirical data. 

Further work is required to complete the verification and validation of SensorVision. In 
particular, the following tasks still need to be performed. 

• The reflection components of the IR radiometric equation need to be validated to 
determine its effect on MWIR simulations. 

• Verification of the SensorVision algorithm is still required. The accuracy associated 
with the use of lookup tables and the exactitude of employing extrapolation 
techniques to approximate various parameters should be investigated. 

• The effects of digital artifacts on HIL simulations should be explored [1]. The 
effects of alias induced scintillations, pixel bit resolution, and z-buffer fighting 
have the potential to compromise the integrity of HIL simulation results. 

• Finally, procedures for the validation of particular SensorVision simulations 
should be proposed. In particular, accurate and realistic non-real-time models 
should be developed or acquired for the purposes of cross-validation in 
post-processing HIL simulation activities. 
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Appendix A: Using Error Indicators 

The purpose of error indicators is to help users determine the likely level of errors 
associated with using SensorVision in the generation of IR simulations. All error 
indicators have a possible range of zero to 100, where a value of 100 represents the worst 
case. There are error indicators associated with the spectral emissivity of materials, the 
spectral atmospheric transmission coefficient, and the Planck's blackbody spectral 
radiance parameter. Furthermore, the error indicators can be combined to give the 
collective effect of spectral variations in the material emissivity, the atmospheric 
transmission coefficient, and the Planck's blackbody curve on the SensorVision 
generated errors. This appendix provides the equations and data required to use error 
indicators for a range of possible situations. The wavebands considered include the 
MWIR band (nominally specified as the band from 3 to 5 urn) and the LWIR band 
(nominally specified as the band from 8 to 12 urn). 

A.l Error Indicators for Material Emissivities 

The El values for the spectral emissivities of materials can be calculated using 

EL = 200eF, (A-l) 

where ee is the second moment of the spectral emissivity data. The second moments for 
a range of materials are listed in Table A-l, Table A-2, Table A-3, Table A-4, and 
Table A-5. 

Composite Materials 
3-5 \xm band 8 - 12 urn band 

8 ez E et 

beige_fabric 
black_rubber 
brown_plastic 
cream_fiberglass 
gold_nylon 
green_canvas 
grey_fabric 
olive_plastic 
orange_epoxy 
red_nylon 
tan_felt 
white_fabric 
yellow_silicon 
asphalt_shingles 

0.3789 
0.0428 
0.1085 
0.0468 
0.1647 
0.0675 
0.3926 
0.1378 
0.0363 
0.0460 
0.1743 
0.2279 
0.1578 
0.0684 

0.0297 
0.0013 
0.0419 
0.0010 
0.0863 
0.0255 
0.0276 
0.0453 
0.0010 
0.0055 
0.0945 
0.0446 
0.0761 
0.0198 

0.2705 
0.0468 
0.0526 
0.0467 
0.0861 
0.0379 
0.3513 
0.0251 
0.0385 
0.0440 
0.0580 
0.0241 
0.0751 
0.0540 

0.0249 
0.0036 
0.0101 
0.0060 
0.0327 
0.0133 
0.0470 
0.0014 
0.0023 
0.0040 
0.0242 
0.0035 
0.0337 
0.0210 

Table A-l: Emissivity mean and second moment values for different composite materials. 
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Construction 
Materials 

3-5 lira band 8 - 12 \im band 

£ et E et 

black_asphalt 
block_concrete 
clear_glass 
dark_titanium 
metal_roof 
oxydized_aluminum 
paved_concrete 
pebbled_asphalt 
pine_wood 
red_brick 
roof_tar 
rusting_steel 
urban_commercial 
urban_residential 
wood_siding 

0.0516 
0.1064 
0.0305 
0.6908 
0.7930 
0.7631 
0.0561 
0.0684 
0.1220 
0.2739 
0.0488 
0.6963 
0.0491 
0.1209 
0.1012 

0.0097 
0.0306 
0.0080 
0.0197 
0.0298 
0.0674 
0.0183 
0.0198 
0.0509 
0.0870 
0.0016 
0.0330 
0.0170 
0.0582 
0.0344 

0.0531 
0.0573 
0.1888 
0.7889 
0.8731 
0.8065 
0.0334 
0.0540 
0.0537 
0.0424 
0.0418 
0.8206 
0.0273 
0.0689 
0.0438 

0.0136 
0.0169 
0.1231 
0.0098 
0.0068 
0.0193 
0.0107 
0.0210 
0.0181 
0.0226 
0.0016 
0.0120 
0.0041 
0.0038 
0.0083 

Table A-2: Emissivity mean and second moment values for different construction materials. 

Paints 
3-5 pirn band 8 - 12 \xm band 

£ ez E et 

ash_grey 
battleship_grey 
blackish_brown 
bleached_yellow 
canary_yellow 
dark_tan 
jet_black 
kelly_green 
light_red 
light_tan 
mint_green 
mustard_yellow 
off_white 
olive_green 
sky_blue 
snow_white 

0.0667 
0.0241 
0.1589 
0.0792 
0.0814 
0.1088 
0.0412 
0.0457 
0.0708 
0.0852 
0.0450 
0.3008 
0.1076 
0.0926 
0.0918 
0.2060 

0.0064 
0.0012 
0.0405 
0.0199 
0.0214 
0.0329 
0.0013 
0.0022 
0.0223 
0.0101 
0.0114 
0.0871 
0.0484 
0.0223 
0.0211 
0.0992 

0.0483 
0.0346 
0.0636 
0.0231 
0.0541 
0.0560 
0.0531 
0.0471 
0.0291 
0.0548 
0.0208 
0.1271 
0.0447 
0.0537 
0.0321 
0.0540 

0.0093 
0.0082 
0.0181 
0.0049 
0.0098 
0.0162 
0.0064 
0.0070 
0.0086 
0.0135 
0.0066 
0.0164 
0.0092 
0.0122 
0.0091 
0.0183 

Table A-3: Emissivity mean and second moment values for different types of paints. 
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3-5 |J.m band 8 - 12 urn band 
Soils 

E ez £ ez 

beach_sand 0.3075 0.1456 0.0650 0.0334 
black_sand 0.0886 0.0176 0.0779 0.0445 
clay_soil 0.2835 0.0808 0.0761 0.0402 
compact_soil 0.1034 0.0319 0.0409 0.0070 
desert_sand 0.1677 0.0692 0.0610 0.0215 
dry_lakebed 0.3115 0.0929 0.0650 0.0334 
dry_seabed 0.3609 0.1058 0.0634 0.0318 
fresh_snow 0.0170 0.0052 0.0080 0.0038 
ice 0.0225 0.0121 0.0163 0.0089 
lake_sand 0.1379 0.0649 0.0916 0.0470 
limestone-silt 0.1631 0.0245 0.0834 0.0248 
limestone-silt-sand 0.1269 0.0125 0.0515 0.0084 
limestone-silt-soil 0.1808 0.0388 0.0756 0.0147 
limestonejrock 0.1459 0.0293 0.0924 0.0367 
loam_soil 0.1110 0.0425 0.0286 0.0049 
loamy_sand 0.1763 0.0866 0.1221 0.0846 
lump_coal 0.0269 0.0028 0.0212 0.0026 
old_snow 0.0152 0.0050 0.0093 0.0034 
road_gravel 0.1191 0.0511 0.0496 0.0157 
salt-silt 0.1720 0.0352 0.1016 0.0022 
sand-soil 0.1649 0.0379 0.0483 0.0134 
sandstone-soil 0.1163 0.0226 0.0565 0.0152 
sandstone_rock 0.1459 0.0293 0.0924 0.0367 
sandy_loam 0.1793 0.0635 0.0557 0.0303 
scrub-soil 0.1808 0.0388 0.0756 0.0147 
scrub-soil (shaded) 0.1507 0.0562 0.0216 0.0024 
silt-sand 0.2700 0.0863 0.0433 0.0159 
silty_clay 0.0725 0.0224 0.0286 0.0047 
siltyjoam 0.3609 0.1058 0.0634 0.0318 
tilled_soil 0.2982 0.1248 0.0678 0.0193 
varnished_sand 0.0176 0.0050 0.0106 0.0020 
varnished_sandstone 0.1255 0.0163 0.0650 0.0334 
water 0.1255 0.0163 0.0650 0.0334 
wet_lakebed 0.0607 0.0180 0.0259 0.0032 
wet_seabed 0.0389 0.0279 0.0623 0.0727 
wet_soil 0.0696 0.0114 0.0185 0.0010 
white_sand 0.0668 0.0084 0.0499 0.0010 

Table A-4: Emissivity mean and second moment values for different types of soils. 
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Vegetation 
3 - 5 urn band 8 - 12 Jim band 

E ez £ et 

broadleaf 0.0767 0.0197 0.0419 0.0060 
broadleaf (shaded) 0.0804 0.0180 0.0726 0.0059 
broadleaf-pine 0.0405 0.0032 0.0395 0.0031 
broadleaf-pine (shaded) 0.0380 0 0.0702 0.0030 
broadleaf-scrub 0.1880 0.0729 0.1072 0.0410 
broadleaf-scrub (shaded) 0.1762 0.0649 0.1358 0.0397 
dry_grass 0.1447 0.0534 0.0756 0.0240 
dry_grass (shaded) 0.1426 0.0474 0.1052 0.0232 
grass-scrub 0.1373 0.0469 0.0674 0.0149 
grass-scrub (shaded). 0.1249 0.0415 0.0973 0.0144 
grass-soil 0.0385 0.0026 0.0371 0.0024 
grass-soil (shaded) 0.0370 0.0015 0.0679 0.0023 
lawn_grass 0.0534 0.0061 0.0310 0.0021 
lawn_grass (shaded) 0.0509 0.0036 0.0620 0.0020 
pine 0.0918 0.0110 0.0270 0.0041 
pine (shaded) 0.0943 0.0098 0.0581 0.0040 
pine-broadleaf 0.0825 0.0152 0.0100 0 
pine-broadleaf (shaded) 0.0747 0.0077 0.0417 0 
pine-scrub 0.1282 0.0436 0.0617 0.0131 
pine-scrub (shaded) 0.1218 0.0388 0.0918 0.0127 
scrub 0.1025 0.0316 0.0421 0.0017 
scrub (shaded) 0.0980 0.0275 0.0727 0.0017 
scrub-grass-soil 0.1012 0.0344 0.0438 0.0083 
scrub-grass-soil (shaded) 0.1089 0.0299 0.0744 0.0081 
tree_bark 0.1012 0.0344 0.0438 0.0083 
tree_bark (shaded) 0.1089 0.0299 0.0744 0.0081 
tundra 0.0967 0.0198 0.0527 0.0040 
tundra (shaded) 0.0940 0.0225 0.0830 0.0039 

Table A-5: Emissivity mean and second moment values for different types of vegetation. 

A.2 Error Indicators for the Atmospheric Transmission Coefficient 

The El values for spectral atmospheric transmission coefficients can be calculated using 

EIX = 200ex, (A-2) 

where ex is the second moment of the spectral atmospheric transmission coefficient data. 
The second moments for a range of LOS (line of sight) paths are listed in Table A-6. 
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3-5 um band 8 - 12 ^m band 
Path Description Range 

T ex X ex 

Horizontal Path 1km 0.5242 0.3618 0.6444 0.1381 
2 km 0.4179 0.3466 0.4458 0.1399 
5km X).2712 0.2881 0.1650 0.0943 
10 km 0.1662 0.2112 0.0384 0.0350 
20 km 0.0786 0.1198 0.0029 0.0041 
50 km 0.0134 0.0265 0.0000 0.0000 

Slant Path 10° Elevation 1km 0.5290 0.3618 0.6572 0.1374 
2km 0.4283 0.3483 0.4784 0.1411 
5km 0.2951 0.2986 0.2316 0.1108 
10 km 0.2107 0.2457 0.1076 0.0716 
20 km 0.1616 0.2081 0.0639 0.0505 
50 km 0.1298 0.1803 0.0520 0.0436 

Slant Path 20° Elevation 1km 0.5336 0.3618 0.6689 0.1366 
2km 0.4378 0.3496 0.5062 0.1416 
5km 0.3196 0.3103 0.2932 0.1227 
10 km 0.2635 0.2820 0.2157 0.1069 
20 km 0.2323 0.2614 0.1952 0.0999 
50 km 0.2147 0.2480 0.1823 0.0963 

Slant Path 30° Elevation 1km 0.5378 0.3617 0.6792 0.1359 
2km 0.4464 0.3508 0.5294 0.1416 
5km 0.3447 0.3216 0.3554 0.1319 
10 km 0.3046 0.3029 0.3175 0.1258 
20 km 0.2819 0.2891 0.3026 0.1216 
50 km 0.2711 0.2823 0.2766 0.1234 

Slant Path 60° Elevation 1km 0.5471 0.3614 0.6995 0.1339 
2km 0.4667 0.3544 0.5785 0.1417 
5km 0.3996 0.3394 0.4964 0.1422 
10 km 0.3742 0.3292 0.4793 0.1400 
20 km 0.3638 0.3235 0.4687 0.1388 
50 km 0.3587 0.3215 0.4382 0.1463 

Slant Path 90° Elevation 1km 0.5505 0.3613 0.7067 0.1332 
2km 0.4739 0.3557 0.5946 0.1415 
5 km 0.4157 0.3434 0.5343 0.1429 
10 km 0.3942 0.3351 0.5205 0.1412 
20 km 0.3861 0.3310 0.5057 0.1416 
50 km 0.3821 0.3295 0.4814 0.1492 

Table A-6: Second moment and mean values for transmission coefficients of some LOS paths. 
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A.3 Error Indicators for Planck's Blackbody Spectral Radiance 

The El value for Planck's blackbody spectral radiance is defined as 

EIbb = 200ebb, (A-3) 

where ebb is the second moment of the normalised Planck's blackbody spectral radiance. 
The blackbody spectral radiance is normalised by its peak value in the wave band of 
interest. The second moment of the normalised Planck's blackbody curve as a function 
of temperature is listed in Table A-7. 

Temperature 
3-5 Jim band 

ebb 

8-12 fxm band 
ebb 

200 0.2714 0.1854 

225 0.2806 0.1409 
250 0.2871 0.0943 
275 0.2910 0.0490 
300 0.2924 0.0291 
325 0.2912 0.0531 
350 0.2875 0.0799 
375 0.2814 0.1006 
400 0.2730 0.1168 
425 0.2626 0.1297 
450 0.2502 0.1402 
475 0.2360 0.1488 
500 0.2203 0.1560 
525 0.2032 0.1620 
550 0.1849 0.1671 
575 0.1656 0.1715 
600 0.1453 0.1753 
625 0.1237 0.1786 
650 0.1020 0.1816 
675 0.0811 0.1842 
700 0.0628 0.1864 
725 0.0493 0.1885 
750 0.0441 0.1903 
775 0.0483 0.1920 
800 0.0583 0.1935 
825 0.0706 0.1949 
850 0.0832 0.1962 
875 0.0952 0.1973 
900 0.1061 0.1984 
925 0.1159 0.1994 
950 0.1246 0.2003 
975 0.1320 0.2011 
1000 0.1387 0.2019 

Table A-7: Second moment values for the normalised Planck's blackbody spectral radiance. 

56 



DSTO-RR-0212 

A.4 Combining Error Indicator Values 

The error indicator associated with the product of the material emissivity and 
atmospheric transmission coefficient is given by 

EIZX = 100 x 2eex, where (A-4) 

«~ = Hi(i) +(J) • (A-5> 
Parameters 8 and f are the mean emissivity and transmission coefficient, respectively, 
in the waveband of interest. 

The total error indicator including the effect of Planck's blackbody spectral radiance is 
calculated using 

Eh 
100 

Mtotai'^xEI». (A-6) 

A.5 Equations for Calculating the Second Moment 

The second moment of a variable is given by 

lC(x\-x)2dk 

N 

e=    ^[xk(n)-x]2. (A-8) 
IN 

n = \ 

Equation (A-7) is applicable to a continuous variable x^ with mean value x, while (A-8) 
is applicable to a discrete variable x^(n) of iV samples. 
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